
1. Explain main pillars of Object Oriented Programming.

Ans. Object-Oriented Programming (OOP) is a programming paradigm that is

centered around the idea of objects, which are instances of classes. OOP

focuses on the design and implementation of software systems by defining

objects that encapsulate data and behavior. There are four main pillars of

OOP, which are:

1. Encapsulation: Encapsulation refers to the practice of bundling data and

behavior together within a class. This means that the data and behavior are

hidden from the outside world and can only be accessed through methods

provided by the class. Encapsulation helps to enforce data integrity and

improves the security of the system by preventing external access to data.

2. Inheritance: Inheritance is the ability of a class to inherit properties and

methods from another class. The class that is being inherited from is known as

the parent class, while the class that inherits from it is known as the child class.

Inheritance helps to promote code reuse and allows for the creation of more

specialized classes based on existing ones.

3. Polymorphism: Polymorphism refers to the ability of objects to take on

multiple forms. This means that an object can be treated as an instance of its

own class or as an instance of one of its parent classes. Polymorphism allows

for more flexible and extensible code.

4. Abstraction: Abstraction refers to the practice of hiding implementation details

and focusing on the essential features of an object. This means that only the

relevant information is presented to the user, while the underlying

implementation details are hidden. Abstraction helps to reduce complexity

and makes the system easier to understand and use.

These four pillars of OOP are interrelated and work together to provide a

powerful and flexible programming paradigm for creating complex software

systems.

2. Describe the need of header files in Object-Oriented Programming.

Ans. Header files in Object-Oriented Programming (OOP) serve an important

purpose. They contain declarations of functions, classes, and other constructs

that are needed by the program but are defined in other source files. The

need for header files arises from the fact that OOP programs are typically split

across multiple source files, each containing a different class or set of related

functions.

When a program is compiled, the compiler needs to know about all of the

functions, classes, and other constructs that are used in the program. This

information is stored in header files, which are included at the beginning of

each source file that uses them. This allows the compiler to check that the

program is using these constructs correctly, and to generate the appropriate

code to implement them.

Header files also serve as a form of documentation. They provide a summary

of the functions and classes that are defined in a program, and help

developers to understand how these constructs are used. This is particularly

important in large projects, where many developers may be working on

different parts of the code. By including clear and informative header files,

developers can easily understand how different parts of the program fit

together and avoid introducing bugs or other problems.

In summary, header files are an essential part of OOP programming. They

allow the compiler to check that a program is using functions, classes, and

other constructs correctly, and serve as a form of documentation for

developers. Without header files, it would be much more difficult to manage

and understand complex OOP programs.

3. Compare C & C++ platforms.

Ans.

Sr.no Features C ++ C

1. Object-Oriented Programming (OOP) C++ is an object-

oriented programming

language.

This means that C++

has features such as

classes, inheritance,

polymorphism, and

encapsulation.

C is not oriented

programming

language. It doesn’t

have the features such

as classes, inheritance,

polymorphism, and

encapsulation.

2. Compiler C++ is often

considered a superset

C cannot compile C++

code. This means that

of C, which means that

C++ can compile C

code.

developers who want

to use C++ will need a

C++ compiler, while

those who only use C

can use a C compiler.

3. Memory Management C++ offers a range of

memory management

features, such as

dynamic memory

allocation, which

allows developers to

allocate memory at

runtime.

C does not have these

features, and

developers are

responsible for

managing memory

manually.

4. Standard Libraries the C++ standard

library is more

extensive and includes

features such as

strings, streams, and

containers.

They are not present

in the C standard

library.

5. Performance C++ can sometimes be

slower than C, due to

its more extensive

runtime features and

object-oriented

design.

C is known for their

high performance.

4. Define comment. Why is it important to write comments in programs?

Ans. In C++ OOP, a comment is a piece of text that is ignored by the compiler and is

used to provide information about the code. There are two types of comments in C++:

1. Single-line comments: Single-line comments begin with two forward slashes (//) and

continue until the end of the line. Anything after the // is ignored by the compiler.

2. Multi-line comments: Multi-line comments begin with /* and end with */. Anything

between these two markers is ignored by the compiler.

Comments are an important part of programming because they provide information

about the code that is not obvious from the code itself. Here are some reasons why it is

important to write comments in programs:

1. Improve Code Readability: Comments can be used to explain the purpose of a function,

class, or piece of code. This can make the code easier to read and understand, especially

for developers who are new to the codebase.

2. Document Code Changes: Comments can be used to document changes to the

codebase over time. This can help developers understand why a particular change was

made and how it affects the code.

3. Debugging: Comments can be used to temporarily disable code during debugging. This

allows developers to quickly test different parts of the code without having to delete or

modify the code itself.

4. Collaboration: Comments can be used to communicate with other developers who are

working on the same codebase. This can help to avoid misunderstandings and ensure

that everyone is on the same page.

In summary, comments are an important part of programming in C++ OOP because

they improve code readability, document code changes, aid in debugging, and facilitate

collaboration among developers

5. in c++ Explain the concept of looping statements with example

Ans.

Looping statements in C++ are used to execute a block of code repeatedly until a

certain condition is met. There are three types of looping statements in C++: for loop,

while loop, and do-while loop.

Here are some examples of how to use each of these looping statements:

1. for loop: The for loop is used to iterate a specific number of times. It consists of three

parts: initialization, condition, and increment/decrement. Here is an example of a for

loop that prints the numbers from 1 to 10:

Output: 1 2 3 4 5 6 7 8 9 10

2. while loop: The while loop is used to iterate until a certain condition is met. Here is an

example of a while loop that prints the numbers from 1 to 10:

Output: 1 2 3 4 5 6 7 8 9 10

3. do-while loop: The do-while loop is similar to the while loop, but it executes the block of

code at least once before checking the condition. Here is an example of a do-while loop

that prints the numbers from 1 to 10:

Output: 1 2 3 4 5 6 7 8 9 10

These looping statements are commonly used in C++ programming to iterate through

arrays, perform calculations, and implement control structures.

6. Create a class staff having fields: Staff_id, name, salary. Write a menu driven program for :

i) To accept the data

ii) To display the data

Ans. Here's an example of a C++ program that creates a class named Staff with the given

fields Staff_id, name, and salary. The program then uses a menu-driven approach to accept

and display the data.

Explanation:

The Staff class has three private fields: staff_id, name, and salary. It also has two

public methods: accept_data() and display_data().

The accept_data() method prompts the user to input the staff's ID, name, and salary

using the cin object. It uses getline() to read in the name as a string with spaces.

The display_data() method simply prints out the values of the three fields.

In the main() function, the program uses a do-while loop to display a menu of options

to the user: accept data, display data, or exit the program. It reads in the user's choice

using cin and uses a switch statement to call the appropriate method of the Staff

object s.

The loop continues until the user chooses to exit the program by selecting option 3.

7. Describe with examples Inline function and static data member

Ans.

Inline function in C++: An inline function is a function that is expanded in-line when it is

called, rather than executing a function call. This can result in faster code execution and

reduced overhead, but it may also increase the size of the resulting executable file. In

C++, a function can be declared as inline by prefixing the function definition with the

keyword inline.

Example:

In this example, the add() function is declared as inline by using the inline keyword

before the function definition. When the add() function is called in main(), the compiler

replaces the function call with the actual function code, resulting in faster code

execution.

Static data member in C++: A static data member is a variable that is associated with

the class rather than individual objects of the class. There is only one instance of the

static data member that is shared by all objects of the class. To declare a static data

member in C++, the static keyword is used before the data member's type.

Example:

In this example, the MyClass class has a static data member count that is initialized to 0

outside of the class definition. The constructor of MyClass increments the count static

data member each time an object is created.

In main(), three MyClass objects are created, each with a different value. The cout

statement prints out the number of objects created, which is stored in the count static

data member. Since there are three objects created, the output is:

Note that the static data member count is accessed using the scope resolution operator ::

with the class name MyClass. This is because the static data member is associated with the class

itself, rather than individual objects of the class.

8. Write a program to print factorial of given number using special functions constructor &

destructor.

Ans.

Here's an example program that calculates the factorial of a given number using a constructor

and destructor in C++:

Explanation:

The Factorial class has two private fields: num and result. num holds the number for

which the factorial is to be calculated, and result holds the calculated factorial. The

class has a constructor that initializes num to the input argument and result to 1. The

constructor also prints a message indicating that an object has been created for the

given number. The class also has a destructor that prints a message indicating that the

object has been destroyed.

The calculate() method of the Factorial class uses a for loop to calculate the

factorial of the number stored in num and stores the result in result.

In main(), the program prompts the user to enter a positive integer and stores the input

in n. It then creates an object of the Factorial class with n as the argument. The

calculate() method is called on the object to calculate the factorial. Finally, the

program prints the calculated factorial.

When the program finishes executing, the destructor of the Factorial object is

automatically called, which prints a message indicating that the object has been

destroyed.

9. Write a C++ program to overload binary operators ‘>’ and ‘<’ to compare two strings.

Ans.

Here's an example program that overloads the > and < operators to compare two strings in

C++:

Explanation:

The String class has one private field: str, which stores the string value. The class has a

constructor that initializes str to the input argument.

The > and < operators are overloaded using member functions of the String class. The

> operator compares the str value of the calling object with the str value of the input

object s. If the str value of the calling object is greater than the str value of s, the

function returns true. Otherwise, it returns false. The < operator works similarly, but

returns true if the str value of the calling object is less than the str value of s.

In main(), two String objects s1 and s2 are created with the values "apple" and

"banana", respectively. The > and < operators are used to compare the two objects. If s1

is greater than s2, the program prints a message indicating that s1 is greater than s2. If

s1 is less than s2, the program prints a message indicating that s1 is less than s2.

Otherwise, the program prints a message indicating that s1 is equal to s2.

10. Explain the types of polymorphism with example.

Ans.

In C++, polymorphism is the ability of an object to take on multiple forms. There are

two types of polymorphism in C++: compile-time polymorphism (also known as static

polymorphism or function overloading) and runtime polymorphism (also known as

dynamic polymorphism or function overriding).

1. Compile-time polymorphism:

Compile-time polymorphism is a type of polymorphism in which the compiler

determines which function to call based on the number, types, and order of arguments

passed to the function. This is achieved through function overloading, operator

overloading, and template functions.

Function Overloading Example:

In this example, we have defined two functions named print. One function takes an

integer argument and the other function takes a double argument. We call these

functions with different arguments, and the compiler determines which function to call

based on the argument types. This is an example of compile-time polymorphism.

2. Runtime polymorphism:

Runtime polymorphism is a type of polymorphism in which the function call is resolved

at runtime based on the actual type of the object being pointed to or referred to. This is

achieved through virtual functions and inheritance.

Virtual Function Example:

In this example, we have defined a base class Animal with a virtual function sound. We also

define two derived classes Dog and Cat that override the sound function. We then create a

pointer of type Animal and assign it to a Dog object and a Cat object. When we call the sound

function through the pointer, the function call is resolved at runtime based on the actual type of

the object being pointed to or referred to. This is an example of runtime polymorphism.

11. Differentiate between multiple and multilevel inheritance in C++?

Ans.

In C++, inheritance is a feature that allows a class to inherit properties and behavior

from another class. There are different types of inheritance in C++, such as single,

multiple, multilevel, and hierarchical inheritance.

Here's the difference between multiple and multilevel inheritance in C++:

1. Multiple Inheritance:

Multiple inheritance is a type of inheritance in which a class can inherit properties and

behavior from multiple base classes. In multiple inheritance, a derived class can inherit

members from two or more base classes.

Example:

In this example, class C is derived from two base classes A and B. This means that C inherits

members from both A and B. The printA() and printB() functions can be called through an

object of class C.

2. Multilevel Inheritance:

Multilevel inheritance is a type of inheritance in which a class is derived from a base

class, which is itself derived from another base class. In multilevel inheritance, a derived

class inherits from a base class that is itself a derived class.

Example:

In this example, class B is derived from class A, and class C is derived from class B. This

means that C inherits members from both A and B. The printA(), printB(), and

printC() functions can be called through an object of class C.

In summary, multiple inheritance allows a class to inherit from two or more base classes,

while multilevel inheritance involves a chain of derived classes where each class is

derived from the previous one.

12. Write a C++ program to overload increment and decrement operator

Ans.

To overload the increment and decrement operators in C++, we need to define member

functions of the class. Here's an example program that demonstrates how to overload the prefix

increment and decrement operators:

In this example, we have defined a class Counter with a private member variable count.

We have defined two member functions, operator++() and operator--(), which

increment and decrement the count variable, respectively.

To overload the increment and decrement operators, we have used the operator

functions operator++() and operator--(). These functions return a Counter object

that has been incremented or decremented. In this example, we have overloaded the

prefix increment and decrement operators.

In the main() function, we have created an object of the Counter class and called the

display() function to display the initial count value. Then, we have used the

overloaded increment and decrement operators to modify the count value and display it

again using the display() function.

Output:

13. Explain the use of Friend Function in OOPL with example.

Ans.

In C++, a friend function is a function that is declared in a class and has access to its

private and protected members. It can be used to provide external functions or classes

with access to the private or protected members of a class.

Here's an example that demonstrates the use of a friend function in C++:

In this example, we have defined a class MyClass with a private member variable x. We

have also declared a friend function display() inside the class. This means that the

function display() has access to the private member x.

In the main() function, we have created an object of the MyClass class and passed it to

the display() function. The display() function uses the x member of the MyClass

object to display its value.

Output:

14. What is Dynamic Binding?

Ans.

Dynamic binding is a mechanism in C++ that allows the selection of the appropriate

method implementation at runtime, rather than at compile time. It is also known as late

binding or runtime polymorphism. Dynamic binding is achieved through the use of

virtual functions and pointers or references to objects.

In dynamic binding, the function call is resolved at runtime based on the actual type of

the object pointed to by the pointer or reference. This allows us to write more flexible

and extensible code because we can use a single function interface to handle different

types of objects.

Here's an example that demonstrates dynamic binding in C++:

In this example, we have defined a base class Shape with a virtual function draw(). We

have also defined two derived classes, Circle and Rectangle, that override the draw()

function to draw a circle and a rectangle, respectively.

In the main() function, we have created two objects of the Circle and Rectangle

classes and assigned their addresses to a pointer of type Shape. We have then called the

draw() function through the pointer. The actual function that is called depends on the

type of the object pointed to by the pointer. This is an example of dynamic binding.

Output:

In summary, dynamic binding is a powerful mechanism in C++ that allows us to write more

flexible and extensible code. It is achieved through the use of virtual functions and pointers or

references to objects.

15. in c++ What is the use of this pointer?

Ans.

In C++, this is a keyword that is used to refer to the current object within a member

function of a class. It is a pointer to the object whose member function is being

executed.

The primary use of the this pointer is to avoid naming conflicts between local variables

and member variables of a class. When a member variable and a local variable have the

same name, the local variable takes precedence over the member variable. To access the

member variable, we can use the this pointer to refer to the current object.

Here's an example that demonstrates the use of the this pointer in C++:

In this example, we have defined a class MyClass with a private member variable x. We

have also defined two member functions setX() and printX() that set and print the

value of x, respectively. Inside these functions, we have used the this pointer to refer to

the current object.

In the main() function, we have created an object of the MyClass class and called the

setX() function to set the value of x to 10. We have then called the printX() function

to print the value of x. The this pointer is used to access the member variable x.

Output:

In summary, the this pointer is a powerful tool in C++ that allows us to refer to the current

object within a member function of a class. It is primarily used to avoid naming conflicts

between local variables and member variables of a class.

16. Explain the concept of Virtual Function.

Ans.

n C++, a virtual function is a member function that is declared in a base class and can

be overridden in a derived class. When a virtual function is called through a pointer or

reference to a base class, the actual function that is called is determined at runtime

based on the type of the object pointed to by the pointer or reference. This is known as

dynamic binding or late binding.

The primary use of virtual functions is to enable polymorphism, which allows a single

function interface to handle different types of objects. Virtual functions are declared in

the base class with the virtual keyword and are overridden in the derived classes with

the override keyword.

Here's an example that demonstrates virtual functions in C++:

In this example, we have defined a base class Shape with a virtual function draw(). We

have also defined two derived classes, Circle and Rectangle, that override the draw()

function to draw a circle and a rectangle, respectively.

In the main() function, we have created two objects of the Circle and Rectangle

classes and assigned their addresses to a pointer of type Shape. We have then called the

draw() function through the pointer. The actual function that is called depends on the

type of the object pointed to by the pointer. This is an example of dynamic binding.

Output:

In summary, virtual functions are a powerful mechanism in C++ that allow us to achieve

polymorphism and dynamic binding. They are declared in the base class with the virtual

keyword and are overridden in the derived classes with the override keyword. Virtual functions

enable us to write more flexible and extensible code by using a single function interface to

handle different types of objects.

17. Why templates are used in C++? How many types of templates are there in C++?

Ans.

Templates are used in C++ to create generic functions and classes that can work with

different data types without the need to write multiple functions or classes for each data

type. Templates provide a way to parameterize types, allowing us to write code that is

more flexible, reusable, and efficient.

There are two types of templates in C++: function templates and class templates.

1. Function templates: A function template is a generic function that can work with

different data types. It is defined with a type parameter, which can be used to specify

the type of the arguments and the return type of the function. Here's an example of a

function template that calculates the maximum of two values:

In this example, typename T is the type parameter that specifies the data type of the

arguments and the return type of the function. The max() function can be called with

any data type that supports the comparison operator (>), such as int, float, double,

etc.

2. Class templates: A class template is a generic class that can work with different data

types. It is defined with a type parameter, which can be used to specify the data type of

the member variables and the member functions of the class. Here's an example of a

class template that implements a stack:

In this example, typename T is the type parameter that specifies the data type of the

stack elements. The Stack class can be instantiated with any data type, such as int,

float, double, etc.

In summary, templates are used in C++ to create generic functions and classes that can

work with different data types. Function templates and class templates are the two types

of templates in C++. Templates provide a way to write code that is more flexible,

reusable, and efficient.

18. Write a C++ Program to find Largest among two numbers using function template.

Ans.

Here's an example program in C++ that uses a function template to find the largest among two

numbers:

In this example, we have defined a function template findLargest() that takes two

arguments of the same data type and returns the largest among them. The typename T

specifies the type parameter that can be used to represent any data type.

In the main() function, we have declared two integer variables num1 and num2 and read

their values from the user. We then call the findLargest() function template by

passing the two integer variables as arguments. The findLargest() function template

automatically resolves to the int data type because we have passed integer arguments.

Finally, we display the largest number using the cout statement.

Note that the function template can work with other data types, such as float, double,

etc., as long as we pass the same data type arguments.

19. in C++ Explain how exception handling mechanism can be used for debugging a program.

Ans.

Exception handling mechanism in C++ provides a way to handle runtime errors that

may occur during the execution of a program. It allows you to catch and handle

exceptions gracefully, instead of terminating the program abruptly.

Using exception handling mechanism, you can also debug your program by identifying

and handling the runtime errors that occur during program execution. When an

exception is thrown, the program can catch and handle it in a way that can help you

identify the cause of the error.

Here's an example of how exception handling can be used for debugging a program:

In this example, we have used a try block to catch any exceptions that might occur

during the program execution. Within the try block, we have taken two integer inputs

from the user and checked if the second number is zero. If it is zero, we have thrown an

exception with a message "Division by zero".

In the catch block, we have caught the exception and displayed an error message

"Error: Division by zero". Using this mechanism, we can handle the exception gracefully

instead of letting the program terminate abruptly.

By using exception handling mechanism, we can debug our program by identifying the

runtime errors that occur during program execution. We can also add multiple catch

blocks to handle different types of exceptions, and perform appropriate actions based

on the type of exception caught.

20. What is generic programming? How is it implemented in C++?

Ans.

Generic programming is a programming paradigm in which the algorithms and data

structures are written in such a way that they can be used with different data types

without the need for the programmer to write separate code for each data type. It

allows code reuse, reduces code duplication, and improves program efficiency.

In C++, generic programming is implemented using templates. A template is a

mechanism that allows a programmer to define a class or a function with generic types,

which can be used with different data types. Templates are defined using the template

keyword, followed by the template parameter list, and then the class or function

definition.

Here's an example of a template function that can be used with different data types:

In this example, we have defined a function template getMax() that takes two

arguments of the same data type and returns the largest among them. The typename T

specifies the type parameter that can be used to represent any data type.

To use this function template, we can call it with different data types, such as int, float,

double, etc., as shown below:

In this way, we can use the same function template getMax() with different data types without

writing separate code for each data type. This is the essence of generic programming in C++.

21. Discuss the various forms of get() function supported by the input stream. How are they used

in C++?

Ans.

The get() function is a member function of the input stream classes in C++, such as

istream, ifstream, and istringstream. It is used to extract characters from the input

stream. There are several forms of the get() function that are supported by the input

stream, which are as follows:

1. get() with no arguments: This form of the get() function is used to extract the next

character from the input stream and returns it as an integer value. It can be used as

follows:

This statement extracts the next character from the standard input stream and assigns it

to the variable ch.

2. get(char& c): This form of the get() function is used to extract the next

character from the input stream and stores it in the variable c. It returns a

reference to the input stream object, which can be used to chain input

operations. It can be used as follows:

This statement extracts the next character from the standard input stream and stores it

in the variable ch.

3. get(char* s, streamsize n): This form of the get() function is used to extract

up to n-1 characters from the input stream and stores them in the character array

s, followed by a null character. It returns a reference to the input stream object,

which can be used to chain input operations. It can be used as follows:

This statement extracts up to 19 characters from the standard input stream and stores

them in the character array str, followed by a null character.

4. get(streambuf& sb): This form of the get() function is used to extract the next

character from the input stream and inserts it into the stream buffer sb. It returns

an integer value that represents the extracted character. It can be used as follows:

This statement extracts the next character from the standard input stream and inserts it

into the stream buffer sb.

These different forms of the get() function provide flexibility in extracting characters

from the input stream in different ways, depending on the requirements of the program.

They can be used to read input from the standard input stream, files, or other input

sources, and to parse and process the input data in various ways.

22. What is a file mode? Describe the various file mode options available

Ans.

In C++, a file mode is used to specify the mode in which a file should be opened. The

file mode determines whether the file will be opened for reading, writing, or both, as

well as whether the file should be created or truncated if it already exists.

There are several file mode options available in C++, which are specified as a string

parameter to the fstream constructor or the open() method. The following are the

various file mode options available in C++:

1. ios::in: This mode is used to open a file for input operations, which means that the file

will be read-only. If the file does not exist, an error will occur.

2. ios::out: This mode is used to open a file for output operations, which means that the

file will be write-only. If the file does not exist, it will be created. If the file already exists,

its contents will be truncated before writing.

3. ios::app: This mode is used to open a file for output operations in append mode,

which means that the output will be appended to the end of the file. If the file does not

exist, it will be created.

4. ios::binary: This mode is used to open a file in binary mode, which means that the file

will be read or written in binary format, rather than in text format. This is useful for

handling non-text data, such as images, audio, and video.

5. ios::ate: This mode is used to open a file with the initial position at the end of the file,

which means that any output operations will be appended to the end of the file. This

mode is often used for appending data to a file without overwriting its contents.

6. ios::trunc: This mode is used to truncate an existing file to zero length before opening

it for output operations. If the file does not exist, it will be created.

These file mode options provide flexibility in opening and manipulating files in different

ways, depending on the requirements of the program. They can be used to read input

from files, write output to files, append data to files, and handle binary data in various

formats.

23. What is input stream and output stream? Explain various methods to open a file

Ans.

In C++, an input stream and an output stream are objects that are used to read input

from and write output to external files or devices.

An input stream is an object that is used to read data from a file or other input source.

The istream class provides input stream functionality in C++, and it provides various

methods for reading input, such as get(), getline(), ignore(), and peek().

An output stream is an object that is used to write data to a file or other output

destination. The ostream class provides output stream functionality in C++, and it

provides various methods for writing output, such as put(), write(), and flush().

To open a file in C++, there are several methods available, which are described below:

1. fstream constructor: This method is used to open a file using a fstream object, which

can be used for both input and output operations. The fstream constructor takes two

parameters: the name of the file to be opened, and the mode in which the file should be

opened. For example, to open a file named "example.txt" for input and output

operations, the following code can be used:

2. ifstream and ofstream constructors: These methods are used to open a file using

separate ifstream and ofstream objects, which can be used for input and output

operations respectively. The ifstream constructor takes a file name parameter and

opens the file for input operations, while the ofstream constructor takes a file name

parameter and opens the file for output operations. For example, to open a file named

"input.txt" for input operations and a file named "output.txt" for output operations, the

following code can be used:

3. open() method: This method is used to open a file using an existing fstream,

ifstream, or ofstream object. The open() method takes two parameters: the name of

the file to be opened, and the mode in which the file should be opened. For example, to

open a file named "data.bin" in binary mode using an existing fstream object, the

following code can be used:

These are some of the methods available for opening files in C++. By using these methods, files

can be opened and read from or written to using input and output streams, providing a

powerful and flexible means of working with external data sources.

24. Write a C++ program to read a list containing item name, item code, and cost interactively

and produce a three column output as shown below

Ans.

Here is the C++ program that reads a list containing item name, item code, and cost

interactively and produces a three-column output:

Here's an example input and output:

Output:

25. Explain terms - Polymorphism, Inheritance, Abstraction

Ans.

Polymorphism, inheritance, and abstraction are three fundamental concepts of object-

oriented programming (OOP) that help developers to create complex and efficient

software applications.

1. Polymorphism: Polymorphism means "many forms" and refers to the ability of an object

to take on multiple forms or behaviors. In C++, polymorphism is implemented through

virtual functions and function overloading. Virtual functions allow a derived class to

provide its own implementation of a function that is already defined in the base class,

while function overloading allows multiple functions with the same name to be defined,

but with different parameter types.

2. Inheritance: Inheritance is a mechanism in which one class (called the derived class) can

inherit properties and methods from another class (called the base class). In C++,

inheritance is implemented through the class keyword, where the derived class inherits

the members (i.e., variables and functions) of the base class using the public, private,

or protected access specifiers.

3. Abstraction: Abstraction is a process of hiding complex details and presenting only the

essential features to the user. It is achieved in C++ through the use of abstract classes

and interfaces. An abstract class is a class that cannot be instantiated but can be used as

a base class for other classes, while an interface is a collection of abstract methods that

define a set of behaviors that a class must implement.

In summary, polymorphism allows objects to take on multiple forms, inheritance allows

a derived class to inherit properties and methods from a base class, and abstraction

allows for the hiding of complex details and presentation of only the essential features

to the user. These three concepts are fundamental to the design and implementation of

effective object-oriented software systems.

26. in C++ Create a class staff having fields: Staff_id, name, salary. Write a menu driven program

for : i) To accept the data

 ii) To display the data

Ans.

Here's a sample code that implements the menu-driven program for accepting and displaying

data for the Staff class:

In this program, the Staff class has three private data members: Staff_id, name, and

salary. It also has two public member functions: acceptData() and displayData(),

which are used to accept and display the data respectively.

In the main() function, a Staff object is created, and a menu is displayed to the user

using a do-while loop. Depending on the user's choice, the corresponding function is

called. The program continues to loop until the user chooses to exit.

27. Write a program to print factorial of given number using special functions constructor & destructor.

Ans.

Here is a C++ program to print the factorial of a given number using constructor and destructor:

Explanation:

 We have created a class Factorial with two private data members num and fact.

 The constructor Factorial(int n) is used to calculate the factorial of the given

number n using a for loop and stores the value in fact.

 The public function display() is used to display the factorial value.

 The destructor ~Factorial() is used to display a message when the object is

destroyed.

 In the main() function, we accept a number from the user and create an object of the

Factorial class by passing the number as a parameter.

 Then we call the display() function to display the factorial value and the destructor is

called when the program terminates.

28. Explain how exception handling mechanism can be used for debugging a C++ program

Ans.

In C++, exception handling is a mechanism that allows you to handle runtime errors in a

structured manner. With exception handling, you can catch and handle errors that occur

during the execution of a program.

Exception handling can be used for debugging a C++ program in the following ways:

1. Identifying the location of the error: When an exception is thrown, the program stops

executing normally and control is transferred to the exception handler. By examining the

exception information, you can identify the location of the error in the program.

2. Providing useful error messages: When an exception is caught, you can display a useful

error message to the user, explaining the nature of the error and suggesting how to

correct it.

3. Providing graceful recovery: Exception handling allows you to gracefully recover from

errors and continue the execution of the program. This can prevent the program from

crashing and allow the user to continue working with the program.

Here's an example of how exception handling can be used for debugging a C++

program:

In the above example, if the user enters 0 as the second number, a "Division by zero error"

exception is thrown. The exception is caught in the catch block, which displays an error message

to the user. This way, the user is informed of the error and can correct the input values.

28. Discuss the various forms of get() function supported by the input stream. How are they used

C++ program?

Ans.

In C++, the get() function is a member function of the istream class and is used to

extract characters from the input stream. The get() function can be used in different

forms based on the input parameters passed to it.

The various forms of the get() function are:

1. get(): This form of the get() function is used to extract a single character from the input

stream.

2. get(char& ch): This form of the get() function is used to extract a single character from

the input stream and store it in the variable 'ch'.

3. get(char* str, int n, char delim): This form of the get() function is used to extract a string

of characters from the input stream and store it in the character array 'str'. It extracts 'n'

characters or until the delimiter character 'delim' is encountered, whichever comes first.

4. getline(char* str, int n): This form of the get() function is used to extract a line of

characters from the input stream and store it in the character array 'str'. It extracts 'n'

characters or until the end of the line is encountered, whichever comes first.

These different forms of the get() function can be used in a C++ program to extract

input from the user through the console and process it accordingly. For example, the

get() function can be used to read user input and store it in a string variable, as shown

below:

In the above program, the get() function is used to read the user's name from the console and

store it in the 'name' character array. The name is then printed to the console using cout.

29. What is input stream and output stream? Explain various methods to open a file.

Ans.

In C++, an input stream is a flow of data from an input source (such as a file, keyboard,

or network connection) into a program, while an output stream is a flow of data from a

program to an output destination (such as a file, console, or network connection).

To open a file in C++, there are various methods:

1. Using the constructor of the file stream class: You can create an object of the ifstream

(for input) or ofstream (for output) class by specifying the file name and the file mode.

For example:

Here, ios::in and ios::out are the file modes for input and output, respectively.

2. Using the open() function: You can use the open() function of the file stream class to

open a file. For example:

3. Using the fopen() function: You can also use the fopen() function from the C standard

library to open a file. For example:

Here, "r" and "w" are the file modes for reading and writing, respectively.

It's important to note that when using files in C++, you should always close the file after

use, using the close() function for file stream classes or fclose() function for FILE

pointers.

